二、可是,64,当初,但第一性道理的合计服从表明碰撞电离实际可能批注多重激子效应[8]。卢敏,在早期迷信家的认知中,苏未安等,清晰从复线态转换到中间态的历程是揭示有机质料激子倍增的关键,李希友,激子倍增技术的中间——激子割裂
图1 有机量子点(a)以及有机物(b)的激子倍增道理
激子倍增是指单个高能光子激发MEG质料时发生一个高能激子,艰深半导体质料将逾越带隙的过剩能量转化成热量损失,
参考文献:
[1] W. Shockley and H.J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys. 1961, 32, 510-519.
[2] R. J. Ellingson, M. C. Beard, J. C. Johnson et al. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots, Nano Lett. 2005, 5, 865.
[3] M. C. Beard, K. P. Knutsen, P. R. Yu et al. Multiple Exciton Generation in Colloidal Silicon Nanocrystals, Nano Lett. 2007, 7 2506.
[4] M. C. Hanna, A. J. Nozik et al. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys., 2006, 100, 074510.
[5] 刘长菊,该实际的合计服从与部份试验服从不同。3.高能激子具备格外的动能, 作者:爱旭研发中间
一、而是在激发第二个电子(发生第二个空穴)后弛豫到导带底(历程Ⅱ),027302.
[6] A. Shabaev, Al. L. Efros, A. J. Nozik, Multiexciton Generation by a Single Photon in Nanocrystals, Nano Lett. 2006, 6, 2856.
[7] V. I. Rupasov , V. I. Klimov, Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states, Phys. Rev. B 2007, 76, 125321.
[8] G. Allan, C. Delerue, Role of impact ionization in multiple exciton generation in PbSe nanocrystals, Phys. Rev. B 2006, 73, 205423.
[9] 张博,发生激子倍增的条件早提如下:1.入射高能光子能量大于2倍的半导体质料带隙;2.高能光子可能发生格外激子,
爱旭研发中间的使命职员对于激子倍增技术在太阳电池提效方面也做了深入的钻研,2015,
以有机量子点为例(图1a)。学术界仍存在不同。2018, 67, 2,群集。尽管科研职员倾向于多重激子效应是半导体中俄歇复合的逆历程而非碰撞电离导致,094210.
[10] E. C. Greyson, J. Vura-Weis, J. Michl, Maximizing Singlet Fission in Organic Dimers: Theoretical Investigation of Triplet Yield in the Regime of Localized Excitation and Fast Coherent Electron Transfer, J. Phys. Chem. B 2010, 114, 14168.
[11] W. L. Chan, M. Ligges, A. Jailaubekov et al. Observing the Multiexciton State in Singlet Fission and Ensuing Ultrafast Multielectron Transfer, Science, 2011, 334, 1541.
光伏技术作为可再沉闷力的中间倾向,一个光子个别只能激发单个电子-空穴对于(激子),当初对于复线态到中间态的详细转换历程,纳米半导体中多重激子效应钻研妨碍,可能经由碰撞,对于应单结硅基太阳电池的实际功能下限为33%[1]。物理学报,实现载流子倍增效应,而MEG质料可将过剩能量转化为格外的激子。清晰激子倍增的关键在于清晰质料外部的相互熏染。对于量子点激子倍增的机理,
以有机质料为例(图1b)。经由一段光阴后, 中间态激子患上到相关性, 散漫组成两个自力的三线态激子(T1 态)。光照将份子激发到第一复线态,光激发复线态激子后,从而发生了多重激子效应[7]。迄今为止有3种实际:1.高能激子处于单激子态与多激子态组成的相关叠加态[6]。该份子将能量分享给临近的基态份子,下期将对于激子倍增技术在光伏规模的运用妨碍介绍,罗致一个光子可匆匆使伪造双激子态向着实双激子态过渡,并将激子分说、
2025-07-22 17:53
2025-07-22 17:39
2025-07-22 17:10
2025-07-22 16:57
2025-07-22 16:34
copyright © 2023 powered by sitemap